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Abstract

Three linear equating methods for the common item nonequivalent

populations design, a design commonly used in practice, are compared using an

analytical method. The analysis is graphically illustrated using data from

actual test administrations. Conclusions derived from the analysis which have

implications for the practical application of these equating methods are

discussed.

Key Words: Linear Equating, Tucker's Equating Method, Levine's Equating

Method, Congeneric Model
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Introduction

Linear equating methods for the common item nonequivalent populations

(CINEP) design are derived or discussed by several authors: Gulliksen (1950),

Levine (1955), Angoff (1971,1982), Braun and Holland (1982), Kolen (1985),

Wooduff (1986), and Kolen and Brennan (1987). Angoff (1971) refers to this

design as design IV--nonrandom groups. Under this design, a new test X is

given to group 1 and an old test Y is given to group 2, while a usually

shorter anchor test V is given to both groups. The anchor test V may comprise

a scoreable part of the tests and this is referred to as the inclusive anchor

situation, or test V may not contribute to examinees' scores and this is

referred to as the exclusive anchor situation. Two methods commonly used in

practice for linear equating under the CINEP design are Tucker's equally

reliable method (Gulliksen, 1950; Angoff, 1971, 1982; Kolen, 1985) and

Levine's equally reliable method (Levine, 1955; Angoff, 1971, 1982; Woodruff,

1986). A third method recently introduced by Woodruff (1986) is called the

congeneric method. Tucker's method makes assumptions about observed score

regressions, while the Levine and congeneric methods make assumptions about

true score regressions. Tucker's method is based on a linear regression

model, while the Levine and congeneric methods are based on linear structural

models. The congeneric method is less restrictive in its assumptions than is

Levine's method, but as a consequence the congeneric method is slightly more

difficult to implement in that it requires an estimate of the anchor's

reliability. According to Angoff (1971), who cites Levine (1955) and Lord

(1960), Tucker's method is most appropriate for situations in which the two

groups show no more than small differences in mean and ariance on the anchor,

while Levine's method (and the congeneric method also) may accommodate larger

differences so long as the true scores on the tests and anchor correlate
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unity. The purpose of the present paper is to compare thrcagh analytical and

empirical means the performance of the three methods as the covariance between

the tests and the anchor varies. Klein and Jarjoura (1985) undertook a

similar investigation using only empirical methods. They voted that Levine's

method was more sensitive than Tucker's to a lack of content balance between

the tests and the anchor. The present study will suggest an explanation for

their finding which indicates that the performance of the congeneric method

should be more similar to the Tucker method than to the Levine method as the

covariance between the test and anchor decreases. This result has practical

implications for equating and these will be discussed. Real test data will be

used to graphically illustrate these conclusions.

Analysis

The analysis will begin with the exclusive anchor situation. Later, it

will be shown how the results for the exclusive situation easily generalize to

the inclusive situation. For the three methods under consideration: Tucker's

equally reliable method, Levine's equally reliable method, and the congeneric

method, if the two groups do not differ in either mean or variance on the

anchor, then all three methods reduce to Angoff's (1971) design I: random

groups equal reliabilities method since no adjustment for group differences is

necessary. If the groups do differ in performance on the anchor, then the

anchor differences are used to adjust for group differences on X and Y. The

higher the correlation between V and X and V and Y the more likely that this

adjustment is appropriate (Cook and Peterson, 1987; Angoff, 1987). It may be

shown (Kolen and Brennan, 1987; Woodruff, 1986) that the following three

parameters determine how these anchor group differences a,'e incorporated into

the equating for the Tucker, Levine, and congeneric metuods respectively:

6



Linear Equating
4

Y
T

= a /02

Y
L

= (0
yv y

+ 02)/(a
yv

,+ a2) and
v

IC = 0 /o2p , = I /p ,
yv v vv T vv

The above gamma parameters pertain to the old test Y administered in

population 2. If the synthetic population (Braun and Holland, 1982) is

invoked, then the equating requires that the gamma parameters be estimated for

both the old and new tests. If the syrthetic nopulation is ignored

(Gulliksen, 1950; Woodruff, 1986; Kolen and Bren.lan, 1987), then the gamma

parametePs need only be estimated for the old test. For simplicity, this

paper will ignore the synthetic population, but its conclusions apply equally

to equating with the synthetic population. In practice, these parameters are

usually estimated by the method of moments (Angoff, 1971, 1982; Woodruff,

1986).

To simplify the analysis, certain assumptions will be made which will

always be satisfied in the practical application of these linear equating

methods. They are: 02
Y

> a2 > 0 and 0 .5.0
yv

cay av , the latter being
%

equivalent to 0 5 p
yv

5 1 . In what follows a
yv

will be treated as a

mathematical variable, but a2, a2, and p
vv

, will be treated as mathematical
y v

constants. Under classical test theory, p2
yv

5. p
vv

, The present analysis

allows the constant, o v" to assume any value between zero and one.

Focusing first on the Tucker method shows that YT is a linear function of

o
yv

with positive slope 1/(32
v

and zero intercept. Its minimum valAle of zero

occurs when a
yv

= 0, and its maximum value is a
y
/a

v
which occurs when

a = a 0 . As a decreases, the Tucker method gives anchor group
yv y v Yv

differences less weight in the equating process. This is a reasonable and

desirable property, since, a was previously mentioned, group differences
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between Y and X will usually be reflected by group differences on V largely to

the extent that V correlates with Y and X.

The second method to be analyzed is Levine's. The first derivative of

Y
L

is dY
L
/da

yv
(02v 02 ma

yv
4.

)
2,2 < 0 . Its second derivative is

/d02 2(02 02)/(0
yv

4. 02)3 > 0
v'

Hence, Y1 is a decreasing function

of a
yv

with upward concavity. Furthermore, YL has a minimum value

of a
y
/a

v
when a

yv
= a

y
5
v

, and a maximum value of 02/02 when a
yv

= 0. Since
y v

the minimum value of 'IL coincides with the maximum value of YT, YL .? YT .

As a
yv

decreases, the Levine method gives anchor group differences more weight

in the equating process. This is an unreasonable and undesirable property,

but recall that the Levine method assumes that p(T
y
,T

v
) = 1 which implies

that p
yv

= (p
yy

,p
vv

,)V2 which in turn implies that a
yv

= a a
v
(p

yy
,p

vv
,)

V
2 . The

y

above analysis reveals that the Levine method will perform poorly when this

assumption is violated.

Focusing, finally, on the congeneric method, lc has behavior similar to

YT . It is a linear function of a
yv

as is YT, but it has a steeper positive

slope given by 1//0
v
p
vv

,. Its minimum is also zero when 0
yv

- 0, but its

maximum of a
y
/a

v
p
vv

, when a
yv

= a
y
a
v

is greater than Y
T
's maximum.

Consequently, Yc YT with equality holding only when p
vv'

= 1, as can also be

seen from an inspection 3f the formulas for YT and Yc. Like the Tucker

method, the congeneric method has the desirable property of giving less weight

to anchor group differences as a
yv

decreases. However, the congeneric method,

like the Levine method, assumes that p(T
y
,T

v
) = 1 or equivAlently that

a
yv

=
y
a
v
(p

yy
,p
vv

,)
V
2 . The above analysis reveals that the congeneric

method, in contrast to the Levine method, performs reasonably when this

assumption is violated.
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The previous analysis has focused on the exclusive anchor situation. It

can be shown that the Y parameters for all three methods in the inclusive

anchor situation equal their respective exclusive situation 'Cs plus unity

(Woodruff, 1986). Hence, i-he above results for the exclusive anchor situation

apply to the inclusive anchor situation with only slight mdification which

does not alter comparative performance between the three procedures.

Illustration

The previous analysis is illustrated under the exclusive anchor situation

for four different test administrations in Figures 1 through 4. Though the

data are real, the exact details of the present application are not reflective

of the actual equating situations and are illustrative only.

Insert Figures 1 through 4 about here

To facilitate comparisons among the graphs, gamma has been resealed by the

multiplication of 1 = sysv/sysv so that each graph has its horizontal axis on

the scale of ryv from n to 1. At the bottom of the figures are the values of

the statistics from which the graphs were derived. The reliabilities are

alpha coefficients. For both groups, the number of test items and anchor

items for Figures 1 through 4 are, respectively, (295, 105), (190, 60), (55,

20), and (32, 13), while the number of examinees in group 1 and group 2 are,

respectively, (326, 305), (748, 1625), (700, 4093), and (1111, 4093). The

statistics are for the old test I administred in group 2.

The figures are presented in order of test length with the longest and

most reliable test presented in Figure 1 and the shortest and least reliable

test presented in Figure 4. As a consequence, the figures are similarly

ordered by the actual sample value of the correlation between the test and its

9
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anchor, rvv, as can be seen from the vertical dashed line in each graph. The

graphs indicate that as the reliability of the anchor decreases the

discrepancy between the congeneric and Tucker gammas increases as their

formulas indicate.

For Figures 1 and 2 the disattenuated correlation between the test and

its anchor is between .99 and 1.01; so, for these figures, the actual sample

correlation indicated by the vertical dashed line is the maximum attainable

Y-V correlation given the unreliability of the measures. In these figures,

the congeneric and Levine plots intersect at the sample value of the Y-V

correlation which is appropriate since both methods assume unity for the value

of the disattenuated Y-V correlation. In Figure 3, the intersection occurs to

the right of the correlation, while in Figure 4 it is slightly to the left.

The disattenuated correlation for the data in Figure 3 is .92. The

disattenuated correlation for the data in Figure 4 is 1.02. Figure 3 will be

discussed in the next section since it so clearly demonstrates the centrrs'

point of this paper. Conversely, Figure 4 suggests a limitation. Here, where

the 13-item anchor is quite short, it is probable that the anchor's

relia'Dility is slightly under-estimated with the result that the disattenuated

Y-V correlation and the congeneric gamma are slightly over-estimated.

Alpha coefficients were used in the estimation of the disattenuated test-

anchor correlations. These were judged to be appropriate reliability

estimates for the tests used here and for the illustrative nature of this

paper. Careful consideration is necessary for selecting an appropriate

reliability index to use in estimating disattenuated correlations and gamma

under the congeneric method. This topic is discussed by Lord and Novick

(1968, sec. 6.5).



Linear Equating
8

Discussion

The preceding analysis offers an explanation for the empirical results of

Klein and Jarjoura (1985), and it also has implications for the application of

these equating methods. If the groups differ greatly as evidenced by their

performance on the anchor, and as a consequence application of the Tucker

method is untenable, then before applying the Levine method the disattenuated

correlation Letween Y and V should be computed. If this disattenuated

correlation is significantly less than unity, then the Levine method should

also not be used. An appealing alternative is the congeneric method since it

permits large group differences and performs reasonably when p(T
y
,T

v
) < 1.

A IS

This situation is illustrated in Figure 3. Here YL is about 2.4 and Yc is

about 2.1. The congeneric method gives about 12.5% less weight to the anchor

information on mean differences and about 23% less weight to the information

on anchor differences in variances (gamma is squared when applied to

variances). This reduction seems appropriate since the disattenuated Y-V

correlation is only .92 suggesting that the anchor may not be a perfect

representation of the test.

The present analysis which has lead to the above conclusion is based on a

comparison of parameter values. In practice, these parameters will have to be

estimated from sample statistics as was illustrated in the four examples.

This does not compromise the above conclusion, however, since in all practical

applications of equating there is at least several hundred examinees in each

group and more usually many thousand. The parameter estimates will be derived

from sample first and second order moments and first order cross rroduct

sample moments. Hence, the sample statistics will be consistent estimators of

the parameters and the large sample sizes met with in practice will insure

that decisions based on the sample values are reasonably accurate.
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FIGURE 1

Plot of Gammas for SD(Y)=32.837, SD(V)=12.691, and REL(V)=.86176.
The vertical dashed line indicates the actual value of COR(Y,V).
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FIGURE 2
Plot of Gammas for SD(Y)= i 6.497, SD(V)=5.9077, and REL(V)=.70032.

The vertical dashed line indicates the actual value of COR(Y,V).
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FIGURE 3
Plol of Gammas for SD(Y)=4.9067, SD(V)=2.5022, and REL(V)=.53138.

The vertical dashed line indicates the actual value of COR(Y,V).
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FIGURE 4
Plot of Gammas for SD(Y)=3.4624, SD(V)=1.7160, and REL(V)=.35030.

The vertical dashed line indicates the actual value of COR(Y,V).
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